Supporting Information

for Adv. Mater., DOI: 10.1002/adma.201203445

Twisting Carbon Nanotube Fibers for Both Wire-Shaped Micro-Supercapacitor and Micro-Battery

Jing Ren, Li Li, Chen Chen, Xuli Chen, Zhenbo Cai, Longbin Qiu, Yonggang Wang,* Xingrong Zhu, and Huisheng Peng*
Figure S1. Scanning electron microscopy (SEM) images of aligned MWCNT fibers before and after electrodeposition of MnO$_2$ nanoparticles at low magnifications. a. Bare fiber. b. Composite fiber with MnO$_2$ weight percentage of 0.5%. c. Composite fiber with MnO$_2$ weight percentage of 4.1%. d. Composite fiber with MnO$_2$ weight percentage of 8.6%.
Figure S2. Raman spectra of bare MWCNT and aligned MWCNT/MnO$_2$ composite fibers
Figure S3. Charge and discharge of a battery based on the aligned MWCNT/MnO$_2$ composite fiber with MnO$_2$ weight percentage of 0.5% at different currents.
Figure S4. Charge and discharge of a battery based on the aligned MWCNT/MnO$_2$ composite fiber with MnO$_2$ weight percentage of 4.1% at different currents.
Figure S5. Charge and discharge of a battery based on the aligned MWCNT/MnO$_2$ composite fiber with MnO$_2$ weight percentage of 8.6% at different currents.
Figure S6. Dependence of the ratio of specific capacitance on cycle number for the battery fabricated from bare fibers. C_0 and C correspond to the specific capacitance at the first and following cycle, respectively.
Figure S7. Dependence of the ratio of specific capacitance on cycle number for battery fabricated from composite fibers with different MnO$_2$ weight percentages. C_0 and C correspond to the specific capacitance at the first and following cycle, respectively.