Supporting Information

Efficient Dye-Sensitized Photovoltaic Wires Based on an Organic Redox Electrolyte

Shaowu Pan^{1,2}, Zhibin Yang¹, Houpu Li¹, Longbin Qiu¹, Hao Sun¹, Huisheng Peng^{1,2}*

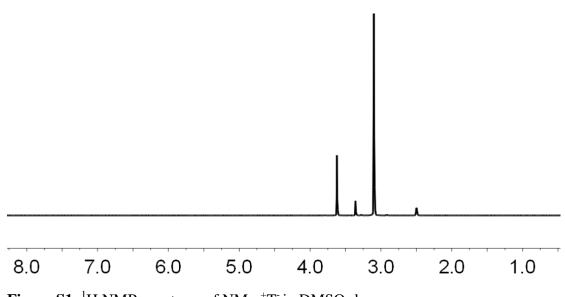
¹State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.

²School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.

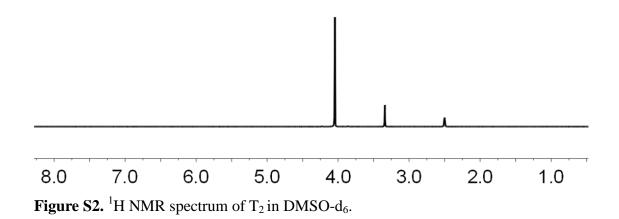
Experimental section

Synthesis of 5-mercapto-1-methyltetrazole N-tetramethylammonium salt (NMe_4^+T). It was synthesized by the neutralization of 5-mercapto-1-methyltetrazole (1.46 g, 12.6 mmol; Aladdin Chemistry, 98%) with a 10 wt% solution of tetramethylammonium hydroxide in methanol (13.7 mL). The reaction occurred at a N₂ atmosphere, and the mixture was then stirred at room temperature for 12 h. After removal of the residual organic solvent and drying at 40 °C in vacuum overnight, the resulting product was mixed with P₂O₅ to produce NMe₄⁺T⁻. The yield was 95%, and no impurities were detected by ¹H NMR.

¹H NMR (400 MHz, DMSO-d₆): δ = 3.62 (s, 3H, CH₃), 3.10 (s, 12H, NMe₄⁺).


Synthesis of di-5-(1-methyltetrazole) disulfide (T_2). It was synthesized from the oxidation of 5-mercapto-1-methyltetrazole (3.0 g, 25.8 mmol) by iodine (3.0 g, 11.9 mmol; Sinopharm, 99.8%) in water. The mixture was sonicated for 1.5 h until the powder I₂ disappeared. The white precipitate was then collected by filtration and washed with cold deionized water, followed by drying under vacuum at 40 °C for 24 h

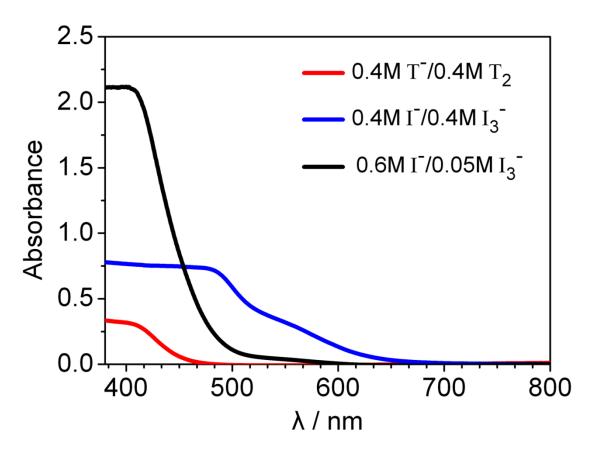
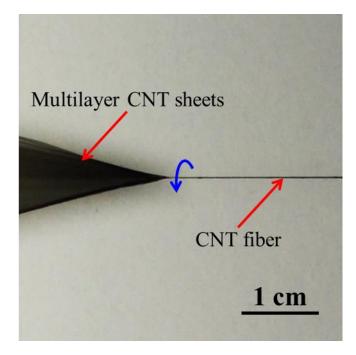
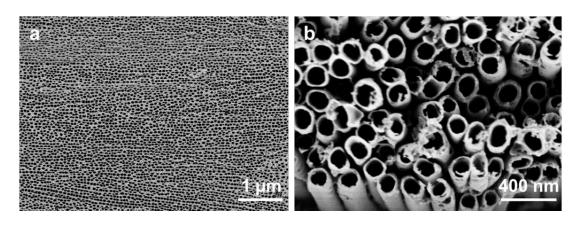
to produce T₂. The yield was 68%, and no impurities were detected by ¹H NMR. ¹H NMR (400 MHz, DMSO-d₆): $\delta = 4.05$ (s, 6H, CH₃).

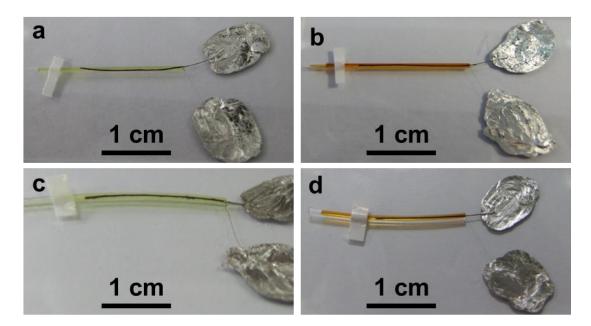

Fabrication of photovoltaic wire. Perpendicularly aligned TiO₂ nanotube arrays were grown on Ti wires by electrochemical anodization in an ethylene glycol solution containing 0.3 wt% NH₄F and 8 wt% deionized water at a voltage of 60 V for 6 h. The anodization was performed in a two-electrode electrochemical cell with Ti wire (diameter of 127 μ m and purity of 99.9%) and Pt sheet as anode and cathode, respectively. The modified wire was washed with deionized water two times to remove the electrolyte thoroughly, followed by heating to 500 °C for 1 h and annealing in air. The modified Ti wire was then immersed into a 100 mM TiCl₄ aqueous solution at 70 °C for 30 min, followed by annealing again at 450 °C for 30 min. After the temperature was cooled to 120 °C, it was immersed into 0.3 mM N719 solution in a mixture solvent of tert-butanol and dehydrated acetonitrile (volume ratio of 1/1) for 16 h. Finally, a CNT fiber was wound around the dye-absorbed working electrode with a spiral pitch of 1 mm. The twisted wire was sealed in a glass capillary tube with diameter of 0.5 mm. The electrolyte was infiltrated into the cell by a capillary force prior to the characterization.

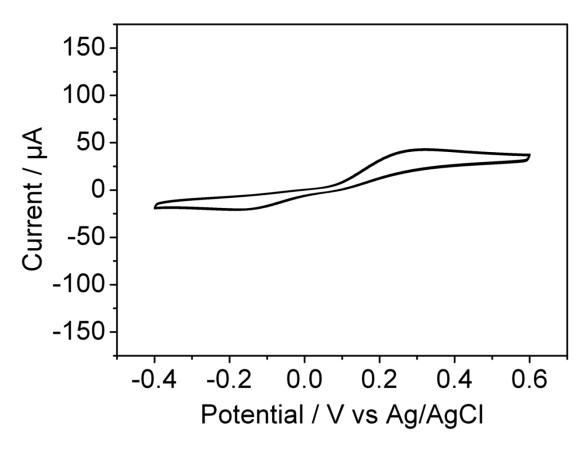
Measurement of the conversion efficiency of the photovoltaic wire. As generally recognized and used, the effective illumination area was calculated by multiplying the length and diameter of the working electrode in the wire cell¹⁻⁶. The J-V characteristics were measured by covering a photomask with a slit which was a little larger than the wire cell. The experimental setup is schematically shown in Figure S16.

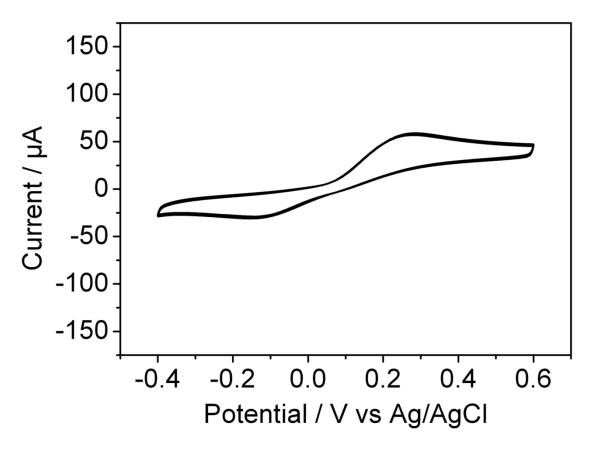
Characterization. The structures of redox couples were characterized by Varian Mercury plus 400M. CNTs were characterized by SEM (Hitachi FE-SEM S-4800 operated at 1 kV). The J-V curves of DSCs were measured by a Keithley 2400 Source Meter under illumination (100 mW/cm²) of simulated AM1.5 solar light coming from a solar simulator (Oriel-Sol3A 94023A equipped with a 450 W Xe lamp and an AM1.5 filter). The light intensity was calibrated using a reference Si solar cell (Oriel-91150). The electrochemical impedance spectroscopy was performed on a CHI 660a electrochemical workstation. The cyclic voltammetry was performed in an acetonitrile solution containing 5 mM T⁻, 0.5 mM T₂ and 0.1 M LiClO₄ with a scan rate of 50 mV s⁻¹ through a three-electrode setup.

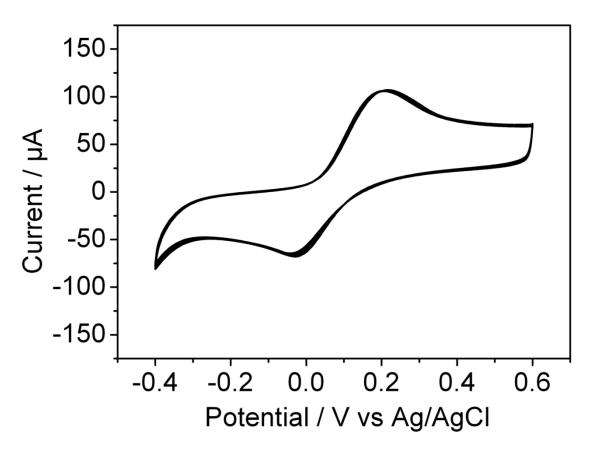
Figure S1. ¹H NMR spectrum of $NMe_4^+T^-$ in DMSO-d₆.

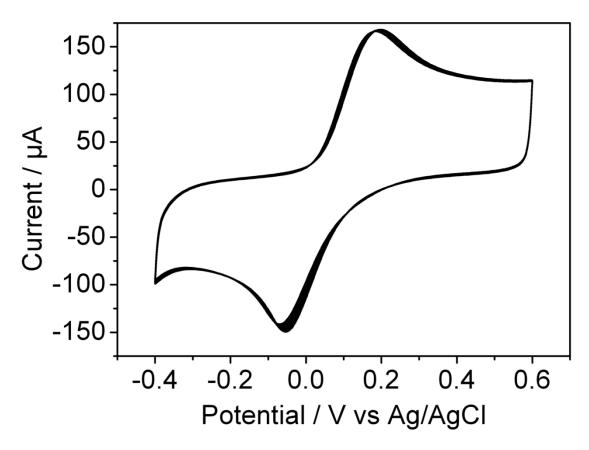




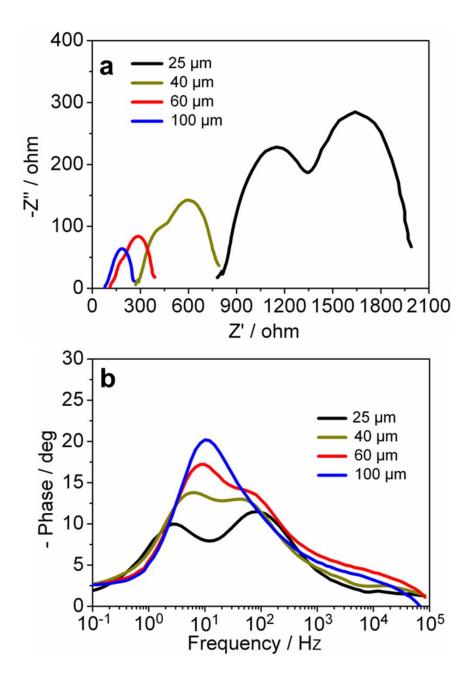

Figure S3. UV/Vis spectra of different electrolytes.

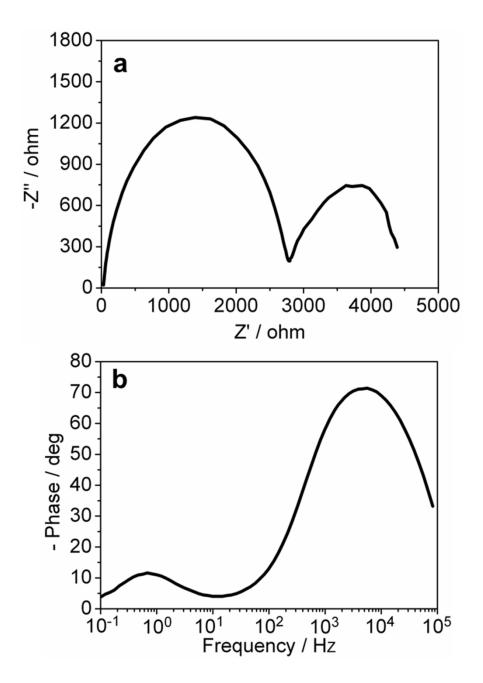

Figure S4. Schematic illustration to the experimental setup to prepare a CNT fiber from many layers of CNT sheets. The blue arrow shows the rotary direction.


Figure S5. Scanning electron microscopy images of perpendicularly aligned titania nanotubes on a Ti surface. **a** and **b**. Low and high magnifications, respectively.


Figure S6. Photographs of the dye-sensitized photovoltaic wires with different electrolytes sealed in capillary glass tube and flexible (fluorinatedethylenepropylene) tubes. **a** and **c**. T/T_2 electrolyte in glass tube and (fluorinatedethylenepropylene) tubes, respectively. **b** and **d**. Γ/I_2 electrolyte in glass tube and (fluorinatedethylenepropylene) tubes, respectively.


Figure S7. Cyclic voltammograms of a CNT fiber (diameter of 25 μ m) in the T⁻/T₂ electrolyte for ten cycles.


Figure S8. Cyclic voltammograms of a CNT fiber (diameter of 40 μ m) in the T⁻/T₂ electrolyte for ten cycles.


Figure S9. Cyclic voltammograms of a CNT fiber (diameter of 60 μ m) in the T⁻/T₂ electrolyte for ten cycles.

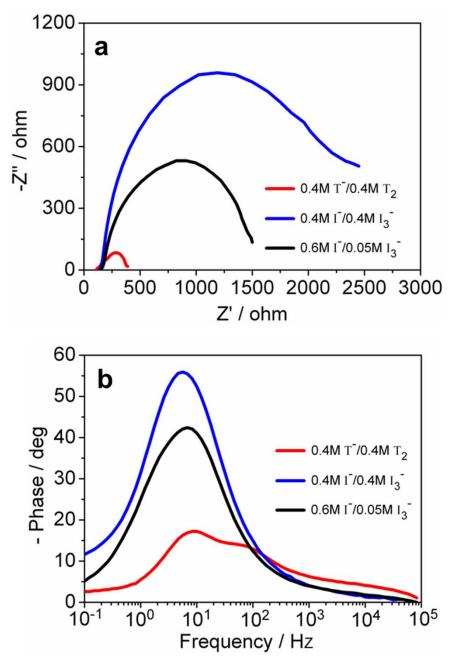
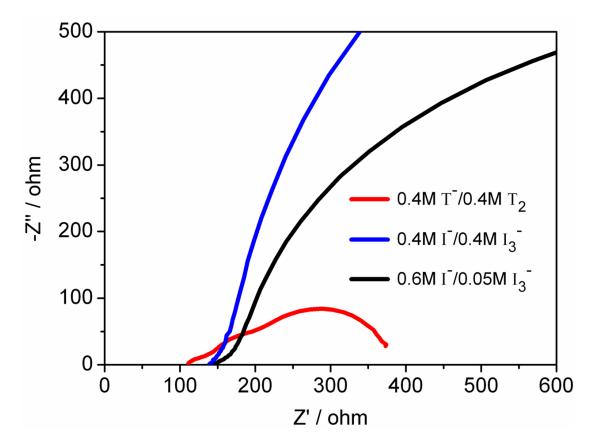
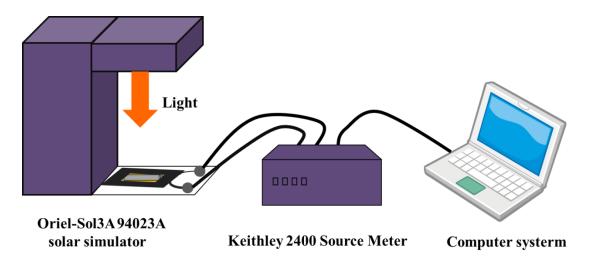

Figure S10. Cyclic voltammograms of a CNT fiber (diameter of 100 μ m) in the T⁻/T₂ electrolyte for ten cycles.

Figure S11. Representative Nyquist spectra of photovoltaic wires fabricated from CNT fibers with increasing diameters of 25, 40, 60 and 100 μ m as counter electrodes in the T/T₂ electrolyte. The frequencies were ranged from 0.1 to 100 kHz with an applied voltage of -0.75 V in dark. **a.** Nyquist plots of photovoltaic wires. **b.** Bode plots of photovoltaic wires.

Figure S12. Representative Nyquist spectra of a photovoltaic wire with a Pt wire (diameter of 25 μ m) as the counter electrode in the T/T₂ electrolyte. The frequencies were ranged from 0.1 to 100 kHz with an applied voltage of -0.75 V in dark. **a.** Nyquist plots of the photovoltaic wire. **b.** Bode plot of the photovoltaic wire.

Figure S13. Representative Nyquist spectra of photovoltaic wires using T/T_2 and I/I_3^- as the redox couple with the same CNT fiber (diameter of 60 µm) as the counter electrode. The frequencies were ranged from 0.1 to 100 kHz with an applied voltage of -0.75 V in dark. **a.** Nyquist plots of photovoltaic wires. **b.** Bode plots of photovoltaic wires.

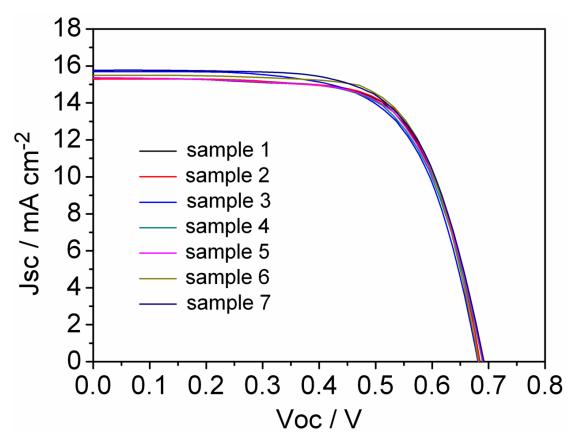

Figure S14. A magnified part of Figure S13a.

Figure S15. Photograph of a photovoltaic wire being made into a knot.

Figure S16. Schematic illustration to the experimental setup for the measurement of the J–V curve of the photovoltaic wire.

Figure S17. J-V curves of a series of photovoltaic wires using T^{-}/T_{2} as the redox couple with the same CNT fiber (diameter of 60 µm) as the counter electrode, measured under AM 1.5 illumination. The electrolyte contains 0.4M T⁻, 0.4M T₂, 0.05 M LiClO₄, and 0.5M 4-tert butyl-pyridine in dehydrated acetonitrile.

Sample	V _{oc} /mV	J _{sc} /mA cm ⁻²	FF	η/(%)
1	689	15.35	0.68	7.19
2	685	15.29	0.69	7.24
3	680	15.69	0.66	7.01
4	688	15.36	0.68	7.08
5	689	15.36	0.67	7.16
6	683	15.49	0.69	7.33
7	689	15.76	0.67	7.26

Table S1. Photovoltaic parameters in Figure S17.

Table S2. Photovoltaic parameters of photovoltaic wires using Γ/I_3^- as the redox couple with the same CNT fiber (diameter of 60 µm) as the counter electrode, measured under AM 1.5 illumination. The same electrolyte containing 0.5M 4-tert butyl-pyridine in dehydrated acetonitrile is used.

Electrolyte	V _{oc} /mV	$J_{sc}/mA \text{ cm}^{-2}$	FF	η/(%)
0.2M Г/0.05M I ₂	734	12.27	0.65	5.87
$0.4M~I'/0.05M~I_2$	739	9.95	0.69	5.12
0.6M I ⁻ /0.05M I ₂	742	13.36	0.60	5.97
$0.8M \ I/0.05M \ I_2$	749	10.68	0.72	5.80
0.2M I/0.1M I ₂	750	5.69	0.66	2.84
0.4M I ⁻ /0.1M I ₂	746	7.20	0.70	3.78
0.6M I ⁻ /0.1M I ₂	740	6.37	0.71	3.37
0.8M I ⁻ /0.1M I ₂	734	8.28	0.66	4.01
0.2M I ⁻ /0.2M I ₂	722	6.60	0.68	3.25
0.4M I ⁻ /0.2M I ₂	713	4.58	0.69	2.27
0.6M I ⁻ /0.2M I ₂	710	5.37	0.72	2.76
0.8M I ⁻ /0.2M I ₂	705	5.22	0.74	2.74

References for the Supporting Information

- (1) Chen, T.; Qiu, L.; Kia, H. G.; Yang, Z.; Peng, H. Adv. Mater. 2012, 24, 4623.
- (2) Fu, Y.; Lv, Z.; Hou, S.; Wu, H.; Wang, D.; Zhang, C.; Zou, D. Adv. Energy. Mater. 2012, 2, 37.
- (3) Lee, M. R.; Eckert, R. D.; Forberich, K.; Dennler, G.; Brabec, C. J.; Gaudiana, R. A. Science 2009, 324, 232.
- (4) Hou, S.; Cai, X.; Fu, Y.; Lv, Z.; Wang, D.; Wu, H.; Zhang, C.; Chu, Z.; Zou, D. J. *Mater. Chem.* 2011, 21, 13776.
- (5) Yang, Z.; Sun, H.; Chen, T.; Qiu, L.; Luo, Y.; Peng, H. Angew. Chem. Int. Ed. 2013, 52, 1.
- (6) Zhang, S.; Ji, C. Y.; Bian, Z. Q.; Yu, P. R.; Zhang, L. H.; Liu, D. Y.; Shi, E. Z.; Shang, Y. Y.; Peng, H. T.; Cheng, Q.; Wang, D.; Huang, C. H.; Cao, A. Y. ACS Nano 2012, 6, 7191.