Carbon nanostructured fibers as counter electrodes in wire-shaped dye-sensitized solar cells

Shaowu Pan,^{1,2} Zhibin Yang,² Peining Chen,² Xin Fang,² Guozhen Guan,² Zhitao Zhang,² Jue Deng,² Huisheng Peng^{1,2*}

¹School of Materials Science and Engineering and Institute for Advanced Materials and Nano Biomedicine, Tongji University, 4800 Caoan Road, Shanghai 201804, China.

²State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China; E-mail: penghs@fudan.edu.cn.

Supporting Information

Figure S1. Schematic illustration to the preparation of a CNT fiber.

Figure S2. TEM image of RGONR produced by unzipping CNTs in core-sheath CNT/RGONR fiber.

Figure S3. (a) Typical AFM image of GO sheets. (b) Height analysis of a GO sheet in

a.

Figure S4. Raman spectra of CNT fiber, core-sheath CNT/RGONR fiber, CNT/RGO composite fiber, and RGO fiber.

Figure S5. Cyclic voltammograms of the Pt wire in the Γ/I_3^- electrolyte. The cyclic voltammetry was performed in an acetonitrile solution containing 0.1 M LiClO₄, 5 mM LiI, and 0.5 mM I₂ with a scan rate of 50 mV s⁻¹ through a three-electrode setup.

Figure S6. Cyclic voltammograms of the Pt wire in the T^{-}/T_{2} electrolyte. The cyclic voltammetry was performed in an acetonitrile solution containing 5 mM T^{-} , 0.5 mM T_{2} and 0.1 M LiClO₄ with a scan rate of 50 mV s⁻¹ through a three-electrode setup.

Figure S7. J-V curve of wire-shaped DSCs with the Pt wire as counter electrodes in the Γ/I_3^- electrolyte.

Figure S8. J-V curve of wire-shaped DSCs with the Pt wire as counter electrodes in the T/T_2 electrolyte.

Figure S9. Bode plots of wire-shaped DSCs with CNT fiber, core-sheath CNT/RGONR fiber, CNT/RGO composite fiber and RGO fiber as counter electrodes in the Γ/I_3^- electrolyte. The frequencies were ranged from 0.1 to 100 kHz with an applied voltage of -0.75 V in dark.

Figure S10. (a) Nyquist spectra (b) Bode plots of wire-shaped DSCs with the Pt wire as counter electrodes in the I^{-}/I_{3}^{-} electrolyte. The frequencies were ranged from 0.1 to 100 kHz with an applied voltage of -0.75 V in dark

Figure S11. Bode plots of wire-shaped DSCs with CNT fiber, core-sheath CNT/RGONR fiber, CNT/RGO composite fiber and RGO fiber as counter electrodes in the T^{-}/T_{2} electrolyte. The frequencies were ranged from 0.1 to 100 kHz with an applied voltage of -0.75 V in dark.

Figure S12. (a) Nyquist spectra (b) Bode plots of wire-shaped DSCs with the Pt wire as counter electrodes in the T^{-}/T_{2} electrolyte. The frequencies were ranged from 0.1 to 100 kHz with an applied voltage of -0.75 V in dark.