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Due to the mechanical mismatch between conventional rigid electronic devices and soft tissues at nature,
a lot of interests have been attracted to develop flexible bioelectronics that work well both in vitro and
in vivo. To this end, polymers that can be used for both key components and substrates are indispensable
to achieve high performances such as high sensitivity and long-term stability for sensing applications.
Here we will summarize the recent advances on the synthesis of a variety of polymers, the design of typ-
ical architectures and the integration of different functions for the flexible bioelectronic devices. The
remaining challenges and promising directions are highlighted to provide inspirations for the future
study on the emerging flexible bioelectronics at end.

© 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

1. Introduction

With the rapid development on cooperation studies among
materials science [1,2], electronic engineering, artificial intelli-
gence, and biomedical science, there emerges a new and multidis-
ciplinary direction which is named bioelectronics [3-9]. In most
cases, it represents the design and application of electronic devices
such as sensors to solve the problems of biomedical fields, includ-
ing both in vitro and in vivo. Obviously, the conventional rigid elec-
tronic devices typically based on metal and silicon electrodes
cannot effectively meet the requirements of soft tissues mainly
in mechanical property such as stiffness. If a rigid device is
attached to the skin or implanted into the body, the surrounding
tissues may get hurt and the resulting scars will damage or even
disable the devices [10]. Out of question, it is well expected that
bioelectronic devices should mechanically behave like the soft tis-
sue after being adhered to or implanted. They should be also bio-
compatible and stable upon contact with biofluids to avoid the
coating failure, delamination or corrosion [11]. In the case of their
applications in vivo, they would not be peeled off or extracted from
the body to avoid second injury after use. In other words, they
would better degrade in body or be assimilated/metabolized by
the body [12]. In addition, an ideal electronic device should be
implanted with minimal traumas [13] (e.g., by injection through
the use of a needle) and may accommodate body movements
(e.g., it is able to bear stretching, compressing, folding or other
deformations) [14]. Furthermore, it is better to easily integrate
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the other functions such as powering and data transferring in the
bioelectronic devices with small sizes [3,15,16], which are vital
to the applications both in vitro and in vivo.

To fully satisfy the biomedical applications, increasing interests
have been thus attracted to develop the next-generation flexible
electronic devices with a variety of functions in recent years. They
can be soft, deformable, stable, biocompatible and even degradable
to open up a new avenue in the advance of detecting signals or dis-
eases, understanding mechanisms of biological activities, treating
diseases and communicating [17]. The effective applications are
mainly derived from the good and dynamically matching interfaces
[6,16]. For the use of a flexible device in vitro, it can closely attach
on curved skin surface with a stable interface and thus works effi-
ciently under moving [18-20]. In the case of the flexible device
in vivo, the stable and dynamically matching interfaces between
the flexible electronic device and tissues are also found to play a
critical role in high biocompatibility [21-23]; In contrast, the stiff
implants induce astrocytic scars and microglia populations (Fig. 1).

The effective interfaces are closely related to the use of soft
materials for key components or/and substrates, the design of
structures and the realization of functions in flexible bioelectronic
devices [17]. Polymers are first highlighted due to the fact that they
have been typically explored as the promising soft materials, in
addition to the basis of the structure and property design. The rep-
resentative structures and properties are then summarized for the
available flexible electronic devices. The remaining challenges and
promising directions are finally presented to give an inspiration to
the future study in flexible bioelectronics.

2095-9273/© 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
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Fig. 1. (Color online) Interface demands for implantable bioelectronics. A schematic comparison on the foreign body response of stiff (top) and compliant (bottom)
bioelectronic devices. Reprinted with permission from Ref. [4], Copyright 2017 Nature Publishing Group.

2. Polymer materials

The diversity and synthetic tunability of polymer materials offer
them good electrical conductivity for electrodes, optical trans-
parency for substrates and biodegradability for sacrificial layers
in bioelectronic devices [24] (Fig. 2a). Polyaniline (PANI), poly(3,4
-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy) are
widely used as electrodes [1,25,26]. Generally, if organic com-
pounds including high boiling solvents like dimethyl sulfoxide
and methyl pyrrolidone, ionic liquids and surfactants are added,
their electrical conductivities may increase to be comparable to
indium tin oxide (ITO), a typical inorganic electrode material. Silk,
cellulose, collagen, gelatine and other natural polymers with both
high biocompatibility and biodegradation are good candidates for
sacrificial layers that can degrade and dissolve after implanting,
thus minimizing the invasion for better recording or stimulation
[27-29]. Meanwhile, synthetic polymers such as polylactic acid,
polyethylene glycol and their copolymers are also competitive
alternatives as sacrificial layers due to their tuneable degradation
rates and good biocompatibility [7]. As moisture and dielectric bar-
riers, polymers like polydimethylsiloxane (PDMS), poly(p-
xylylene) (mostly used as a trade name of Parylene C), and poly-
imide (PI) are widely explored as insulation substrates to protect
electric components from impairing under direct contacts with
biofluids [5,27,30]. These polymers are transparent, flexible and
biocompatible without immune responses. Note that polymers
are advantageous for large-scale and low-cost preparations
through solution processes such as spin coating [31].

Metal and silicon can be in fact made into nanomaterials to
realize flexibility on the device level, though they cannot change
their intrinsic rigid property, e.g., high elastic modulus of ~100
GPa for silicon. In contrast, polymers show much lower and tune-
able elastic moduli ranged from 100 kPa to 10 GPa, which may be
designed to match biological tissues (typically 1 kPa to 1 GPa for
soft tissues and 10 GPa for hard tissues) to great degree [6,32,33]
(Fig. 2b). Compared with silicon, the use of inherently soft polymer
materials to directly contact biological tissues may greatly reduce
negative reactions for bioelectronic devices owing to the better
interfaces between the devices and tissues.

To prevent the failure of bioelectronic devices, it is also neces-
sary to seal them from exposure to warm, aqueous and saline envi-
ronments associated with the foreign-body response mostly by the
use of polymers. Polymers like PDMS and poly(p-xylylene) that are
commonly explored for clinical applications have been widely
investigated as effective sealing layers. If cracks still occur, we
may introduce self-healing polymers in advance to bioelectronic
devices and restore them with high stability [20,34,35] (Fig. 2c).

3. Structure designs

For human skins, organs and brain skulls with curved surfaces,
it is challenging for typical thin-film bioelectronic devices to attach
to them seamlessly, which for instance results in acute stimulation
or inaccurate detection. Consequently, hydrogels and adhesive
polymers may be used to improve compliant contacts by
increasing the adhesion force between devices and tissues [3,23].
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Fig. 2. (Color online) Polymers for soft interface and functionalization. (a) Different components with different polymers of a flexible bioelectronic device. (b) Logarithmic plot
on the comparison of elastic moduli for various biological tissues and materials. (c) The realization of self-healing function by the use of self-healing polymer. Reprinted with
permission from Refs. [4] and [34], Copyright 2017 Nature Publishing Group and 2013 Wiley-VCH Verlag.

A representative strategy is to modify the structure of the bioelec-
tronic devices by coating soft polymers on rigid electrodes
[21,30,36]. For instance, biodegradable poly (lactic-co-glycolic
acid) was used as the sacrificial layer or substrate, followed by
coating electrodes, interconnects and interlayer dielectrics to pro-
duce a transient hydration sensor [7]. It might dissolve completely
to prevent the second injury caused by peeling off (Fig. 3a). Simi-
larly, we may implant the flexible bioelectronic device by a tempo-
rary hard shuttle and then remove it after insertion so that only the
soft part remains in vivo. For instance, cellular-scale optoelectronic
devices were produced from a thin polymer layer of epoxy and bot-
tom bioresorbable adhesive layer of biopolymer like silk fibroin,
which made it possible to remove the rigid microneedle after
implanting [4] (Fig. 3b, i). The bioelectronic devices might even
be stretchable to adapt to the curved surfaces through the use of
elastomeric substrates [37] (Fig. 3b, ii). For the above structure

designs, the polymer substrate layer may reduce the mismatch in
stiffness between devices and tissues.

Stretchability is key to the bioelectronic devices [14,19,31], e.g.,
a strain of more than 80% on the knuckle, over 50% on the knee
joint and no less than 10% volume change in cardiac tissue [6].
Besides the use of elastomeric substrates, another general and
promising strategy is to make them into specific architectures that
are stretchable. For the first typical method, Peano curve was
designed for the bioelectronic devices that could be stretched
although the building blocks themselves were rigid at nature
[38] (Fig. 3c). The tensile strains for the wires attached to skin
replica with conformable contact exceeded 30% in both horizonal
and vertical directions (Fig. 3d, i). For the second typical method,
biaxially stretchable devices based on single crystalline silicon
were realized by designing a wavy architecture [39] (Fig. 3d, ii).
For the third method, a multielectrode array was fabricated on
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Fig. 3. (Color online) Structure design of flexible bioelectronic devices for dynamically mechanical stability. (a), (b) Structure and demonstration of typical planar compliant
bioelectronic devices, respectively. (c), (d) Structure and demonstration of stretchable bioelectronic devices, respectively. (e), (f) Structure and demonstration of cable-like
bioelectronic devices, respectively. Reprinted with permission from Refs. [6,2,37-40,46,7] and [25], Copyright Wiley-VCH Verlag, Science Publishing Group, Nature Publishing

Group and American Chemical Society.

honeycomb grid-typed Parylene C substrate to become stretchable
with good non-thrombogenicity and stability for living rat hearts
[40] (Fig. 3d, iii). The stretchable devices may better accommodate
deformations particularly in three dimensions for higher dynamic
stability.

To more efficiently meet the application requirements for
three-dimensional deformations, one-dimensional bioelectronic
devices such as fiber-shaped ones have recently attracted increas-
ing interests [41-44]. A fiber device may move back and forth
along the axial direction and bear the twisting motion at the radial
direction [45]. A variety of fiber-shaped bioelectronic devices
based on polymers were fabricated by means of a thermal drawing
process that further allows for the integration of multiple polymer
materials [46,47]. Generally, those different polymer materials
share both glass transition and melting temperatures, e.g., polycar-
bonate (PC), cyclic olefin copolymer (COC) and conductive poly-
ethylene (CPE) were processed in a single fiber device, which was
stable under bending (Fig. 3e). The fiber-shaped bioelectronic
devices may be also produced by the typical coating methods.
For instance, Parylene C could be deposited onto the surface of a
carbon fiber with a core-shell structure to record single-neuron
in early chronic experiments [8]. Due to an order of magnitude
smaller than traditional recording electrodes, it showed higher
compliant property for the central nervous system (Fig. 3f, i). The
fiber-shaped bioelectronic devices can be further made by simply
mixing conducting polymers, e.g., poly (3,4-ethylenedioxythio
phene)-poly (styrenesulfonate), and highly deformable viscoelastic
polymers together through a solution process [25]. They were self-
healing, foldable and stretchable (Fig. 4f, ii). The fiber-shaped bio-
electronic devices are thin typically with sizes of micrometers to
millimeters, and they thus share promising and unique advantages

to be implanted with minimally invasive operations in the biolog-
ical tissues.

4. Functions

A spectrum of properties can be integrated into the bioelec-
tronic devices for more functions. Here we highlight them in accor-
dance with the above three typical structures to provide some
clues along this boosting direction.

Self-powered electronic devices that can measure biometric sig-
nals on Parylene C substrates might be seamlessly attached onto
human skins or other tissues [16,48]. The high flexibility was indi-
cated by wrapping them over a spatula rod, and they showed accu-
rate and continuous detection of physiological signals without the
need of an external power supply or bulky connecting wires [3]
(Fig. 4a). As an application demonstration, the self-powered elec-
tronic device was attached to a rat heart with the working model
shown in Fig. 4b. Due to the close contact between the heart tissue
and the device, very high signal-to-noise ratio was achieved
(Fig. 4c).

To further enhance the dynamic conformability with the move-
ment of tissues, a lot of efforts have been made to fabricate stretch-
able hydrogel-based elastic electronic devices with elastic moduli
of kilopascals [23,49]. A typical elastic device here consisted of a
highly conductive soft hydrogel as the conductor and an elastic
photoresist as the insulating substrate [3] (Fig. 4d). As a result of
the highly matchable modulus between the device and tissue,
the interfacial impedance was significantly reduced. It showed
approximately 30 times higher current-injection density than
those of platinum electrodes (Fig. 4f) and stable electrical perfor-
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Fig. 4. (Color online) Performance characterization of the polymer-based bioelectronics. Representative illustration of compliant (a)-(c) and stretchable (d)-(f) bioelectronics.
(a) Photograph of the flexible self-powered integrated electronic device wrapped over a spatula rod. (b) Scheme of the detecting mechanism. (c) The application to a rat heart
with typical photograph (top) and output current signal (right). (d) Photographs and structure scheme of stretchable electrode array. (e) Scheme of the in vivo neural
stimulation experiment. (f) The comparison on the percentage of leg movement with respect to the full degree of movement under different stimulation voltages between
polymer and metal electrodes with the same exposed area (n=9). (g), (h) Representative illustration of fiber bioelectronics. (g) Photographs of the preparation and cross-
sectional structure of a fiber-shaped probe. (h) Photograph of a transgenic mouse with implanted probe. (i) Chronic electrophysiological recording after injection of CNQX
during optogenetic stimulation (10 Hz) up to two months. Reprinted with permission from Refs. [1,3] and [46], Copyright Nature Publishing Group.

mances under deformations due to the high volumetric capaci-
tance of the hydrogel materials. These elastic bioelectronic devices
could be developed for localized low-voltage electrical stimulation
of the sciatic nerve in free-moving animals (Fig. 4e).
Polymer-based bioelectronic devices might be integrated with a
variety of functions including optical, electrical and chemical inter-
rogation of neural circuits [50]. Fig. 4g shows the function integra-
tion in a fiber-shaped device made by thermal drawing process and
its application on moving mice [46]. Different polymers were
designed into the fiber-shaped device with high performances.
For instance, PC and COC exhibited low absorptions in the visible
spectrum, and the differences between their refractive indexes
permitted light confinement within PC, whereas CPE served as a
recording electrode. The resulting waveguide, microfluidic chan-
nels and the electrodes can be adjusted to allow for simultaneous
optical stimulation, drug delivery and neural recording in behaving
mice with high resolution (Fig. 4h). It had further offered more
than two months of optogenetic stimulation, drug perturbation,

recordings and analysis of tissue response in vivo (Fig. 4i). The
unique features of polymer materials and one-dimensional shape
enabled stable brain-machine interfaces between the artificial
electronic device and the biological tissue.

5. Outlook

Although a lot of polymer materials and structures have been
investigated for the flexible bioelectronic devices, it remains diffi-
cult to make quantitative comparisons in flexibility, stretchability
and biocompatibility because no general and efficient methods
are available for evaluating the different sizes and shapes of
devices to date. It is also rare to explore the application standards
to assess whether and how they are good enough from a viewpoint
of real applications, and to decide what the effective bioelectronic
devices should be for a specific application.

For the current studies on bioelectronic devices, the same type
of signals has been in fact detected at different sites in vivo [40]. It
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is generally tried to find the same site of a rat or mouse based on
the experiment accumulations, while it is not accurate. It is even
more difficult to accurately repeat the same detecting site for dif-
ferent rats or mice. We need to develop efficient methods to fully
repeat the detections with effective data in real applications.

The integration is always a mainstream direction in electronics
[48], and it is of utmost importance for bioelectronic devices as
they are often implanted in body. The additional functional parts
should be reduced or even prevented for minimal invasion trau-
mas. Although the integration of different functions has been
attempted for several bioelectronic devices in recent years, great
efforts are required to develop more efficient integration methods
and introduce more functions. They should be also made as thin as
possible to reduce the invasion trauma even after integration.

The applications of bioelectronic devices in brain science have
attracted increasing interests just in the past years. It is even more
difficult to design bioelectronic devices to satisfy the very soft
brain tissue. Although the use of hydrogel or the design of inject-
able mesh had been proposed for the bioelectronic devices to bet-
ter match the soft brain tissues, the future breakthrough needs the
tight cooperation of synthesizing appropriate polymers and
designing effective architectures.

It should be noted that the current bioelectronic devices are
typically made at the lab scale. The development of continuous
fabrication methods is out of question necessary to really solve
the biomedical problems. The quantitative assessment system,
repeated signal detection and stimulation control, low-cost mate-
rials and standard processing techniques are the necessary prereq-
uisite to realize the commercialization of bioelectronics. Although
great efforts have been devoted to these aspects, it deserves much
more attentions from the viewpoint of both basic studies and prac-
tical applications. It is expected that these polymer-based flexible
bioelectronics will be ultimately applied to the clinical and practi-
cal fields through unremitting efforts.
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