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1 Materials and Methods 

1.1 Computational details 

Density functional theory (DFT) calculations were carried out with the 

Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient 

approximation (GGA) [1]. All calculations were performed using the Vienna Ab-initio 

Simulation Package (VASP) [2]. The electron-ion interaction was treated with the 

project-augmented wave (PAW) method [3]. The plane wave basis sets with an energy 

cutoff of 450 eV was employed. The Broyden method was employed to relax 

geometries until the maximum forces on all atoms of 0.05 eV/Å were fulfilled. To 

obtain simulated RuxIryO2 system, a large p(4×1) IrO2(110) was utilized with different 

Ru/Ir ratio introduced at the top two atomic layers (see Fig. S1), a k-point of 2×3×1 

was employed for the all these p(4×1) surfaces. During the structural optimization, the 

bottom two layers of the slab were fixed, and the top two layers of the slab and 

adsorbates were allowed to be fully relaxed. To estimate and compare the activity 

trend of the oxygen evolution reaction (OER) on various RuxIryO2 systems with and 

without H2O*/OH*/O* covered on surfaces, the following common mechanism in 

acidic/neutral environment were considered [4-8]: 

H2O + * → OH* + H+ + e                         (1) 

OH* → O* + H+ + e                             (2) 

H2O + OH* → OOH* + H+ + e                     (3) 

OOH* → O2 + * + H+ + e                         (4) 

where “*” represents the active site for OER, and OH*, O* and OOH* represent the 

adsorption of OH, O and OOH on active site, respectively. Notably, the computational 

hydrogen electrode model was used to present the chemical potentials of protons and 

electrons at any given pH and applied potential (U) [8,9], and thus the Gibbs free 

energy change ΔGi of each step above (i = 1, 2, 3 and 4) can be written as: 

ΔG1 = ΔGOH – eU 

ΔG2 = ΔGO – ΔGOH – eU 

ΔG3 = ΔGOOH – ΔGO – eU 

ΔG4 = 4.92 – ΔGOOH – eU 

where ΔGO, ΔGOH and ΔGOOH are the Gibbs adsorption energies of O, OH and OOH 

on active centers respectively, which are calculated relative to H2O and H2 at U = 0 V 

(vs. standard hydrogen electrode, SHE) and pH = 0. Due to the difficulty of 
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GGA-DFT in calculating the bond energy of O2, the experimental formation energy of 

two H2O molecules (4.92 eV) was used to calculate the energy of O2. U is the 

potential measured against SHE and was set to 0 V. Thus, the theoretical 

overpotential (η) can be obtained from the Gibbs free energy change ΔGi (i = 1, 2, 3 

and 4) of each step above:  

η = max(ΔG1, ΔG2, ΔG3, ΔG4)/e – 1.23 (V) 

which is independent of pH explicitly and therefore can be used to assess the OER 

activity trends of RuxIryO2 catalysts in neutral environment. The obtained theoretical 

overpotentials of Ru and Ir sites in RuxIryO2(110) are summarized in Table S1. 

 

The adsorption energies of adsorbate X (X represents O, OH and OOH) were 

calculated with the equation: ΔG(X) = Gx/surf – Gsurf – Gx, where Gx, Gsurf and Gx/surf 

are the total Gibbs free energies of adsorbate X, the clean surface, and the optimized 

surface with X adsorbed, respectively. The more negative ΔG(X) means the stronger 

adsorption of adsorbates on the surface. It is worth noting that, the terms of Gx, Gsurf 

and Gx/surf were calculated including the zero-point energy (∆EZPE) and the entropy 

effect term (T∆S), in which the vibrational frequencies of all optimized structures 

were calculated by DFT calculations [10,11]; with respect to H2, O2 in gas phase and 

H2O in liquid phase, the related zero-point energy (∆EZPE) and entropy effect term 

(T∆S) have been reported by other works [6]. 

 

1.2 Materials 

Ruthenium chloride hydrate (RuCl3·xH2O), sodium hexachloroiridate hydrate 

(Na3IrCl6·xH2O), propylene oxide (≥99%), Nafion® (5 wt% in a mixture of lower 

aliphatic alcohols and water), ruthenium oxide (RuO2) and iridium oxide (IrO2) were 

purchased from Sigma-Aldrich. Potassium dihydrogen phosphate (KH2PO4), dibasic 

sodium phosphate heptahydrate (Na2HPO4·7H2O), ammonium sulfate ((NH4)2SO4), 

magnesium sulfate (MgSO4), calcium sulfate dihydrate (CaSO4·2H2O), nickel sulfate 

hexahydrate (NiSO4·6H2O), ferric citrate pentahydrate (FeC6H5O7·5H2O), sodium 

bicarbonate (NaHCO3), N, N-dimethylformamide (DMF), ethanol, isopropanol and 

acetone were purchased from Sinopharm Chemical Reagent Co., Ltd. Carbon fiber felt 

was purchased from Nantong Beierge Activated Carbon Fiber Co., Ltd. Carbon black 
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(20 nm in diameter) was purchased from Suzhou Tanfeng Co., Ltd. Carbon paper was 

purchased from Toray. All chemicals were used without any further purification.  

 

1.3 Synthesis of catalysts 

The Ru-Ir binary oxide (denoted as RuxIryO2 in the following discussion) catalysts were 

synthesized via a sol-gel method [12]. A typical synthesis procedure is summarized as 

follows: metal salt precursors (0.4 mmol RuCl3·xH2O and 0.1 mmol Na3IrCl6·xH2O) 

were first dissolved in 4 mL DMF. The solution was sealed and cooled in a refrigerator 

for 2 h in order to prevent uncontrolled hydrolysis. Then, 0.5 mL propylene oxide was 

slowly dropwise added under stirring. The mixed solution was then sealed and aged for 

1 day and black precipitates would appear. Afterwards, the solution and precipitates 

were transferred into a vial and immersed in acetone for 3 days, before the precipitates 

were collected by centrifugation and washing with acetone for 5 times to thoroughly 

remove DMF and propylene oxide. The precipitates were dried in vacuum and then 

grinded carefully. Finally, the as-obtained black powder was placed into a tube furnace 

and annealed at 400 oC in air for 2 h to obtain RuxIryO2 catalyst. Accordingly, RuxIryO2 

catalyst with various feed ratios of Ru/Ir salt precursors (1/8, 1/4, 1/1, 8/1) are also 

synthesized via similar procedure. 

 

1.4 Characterizations of catalysts 

The X-ray diffraction (XRD) patterns were collected from a MiniFlex600 X-ray 

diffractometer with Cu Kα radiation (λ = 0.1542 nm) under a voltage of 40 kV and a 

current of 40 mA. Transmission electron microscopy (TEM) and corresponding 

energy dispersive X-ray spectroscopy (EDS) elemental mapping images were 

obtained using a JEOL JEM-2100 TEM equipped with an Oxford energy disperse 

spectrometer. The RuxIryO2 catalyst were subjected to neutral OER reaction before 

TEM observation. The TEM samples were prepared by dropping catalyst powder 

dispersed in ethanol onto carbon-coated copper grids, and were dried in vacuum for 6 

h. The molar ratio of metal elements for RuxIryO2 catalyst was quantified by 

inductively coupled plasma-mass spectrometry (ICP-MS, iCAP7400, Thermo Fisher). 

X-ray photoelectron spectroscopy (XPS) were obtained using a VG ESCALAB 

220I-XL device. All XPS spectra were corrected using C1s line at 284.8 eV. Low 
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energy ion scattering measurements were performed using a Qtac-100 (ION-TOF) 

device. 

 

1.5 Electrochemical measurements 

Electrochemical measurements were performed in a three-electrode configuration by 

an electrochemical workstation (MULTI Autolab M204), using Ag/AgCl (with 3.5 M 

KCl as the filling solution) as the reference electrode and platinum foil as the counter 

electrode. To prepare the catalyst film on glassy carbon electrodes (GCEs, 3 mm in 

diameter), 10 mg catalyst and 2 mg carbon black were dispersed in 1.25 mL mixture of 

water and ethanol (4:1, v/v), and then 80 µL of 5 wt. % Nafion® solution was added. 

The suspension was sonicated for 40 min to obtain a homogeneous ink. Afterwards, 4 

µL of the catalyst ink was carefully deposited onto the GCE, with catalyst loading of 

0.43 mg/cm2. To deposit the catalysts on gold foam and carbon paper electrodes, 20 mg 

of catalyst powders were dispersed in a 4 mL mixture of water and ethanol (1:1, v/v), 

followed by the addition of 100 µL of 5 wt. % Nafion® solution. The suspension was 

sonicated for 40 min to prepare a homogeneous ink. Gold foam with a fixed area of 

0.5×0.5 cm2 coated with water resistant silicone glue was drop-casted with 400 µL of 

the catalyst ink. Carbon paper with a fixed area of 0.5×0.5 cm2 coated with water 

resistant silicone glue was drop-casted with 200 µL of the catalyst ink. 

 

To evaluate the OER catalytic activity, the working electrode was first scanned from 0.6 

to 0.9 V (vs. Ag/AgCl) at a scan rate of 50 mV/s for 20 cycles to achieve stable cyclic 

voltammetry (CV) scans in CO2-saturated 0.5 M KHCO3 aqueous electrolyte. Then 

linear sweep voltammetry (LSV) with a scan rate of 1 mV/s was measured. Unless 

otherwise stated, all CV and LSV measurements were conducted at room temperature 

(23±2 oC). All the potentials were referred to reversible hydrogen electrode (RHE) by 

following calculations:  

ோுாܧ ൌ ஺௚/஺௚஼௟ܧ ൅ 0.2046 ൅ 0.059 ൈ  ܪ݌

The OER stability of catalysts was evaluated by galvanostatic measurement performed 

at a constant current density of 10 mA/cm2
geo (the currents are normalized to projected 

geometric areas). During the galvanostatic measurement, a continuous flow of CO2 gas 

(99.99% purity) into the aqueous electrolyte was maintained. The electrochemical cell 

was placed in a 25±2 oC thermostatic waterbath during the test. 
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1.6 Electrochemical active surface area (ECSA) calculations 

The ECSA of catalysts were calculated based on their electrical double layer capacitor 

(Cdl), which were obtained from CV plots in a narrow non-Faradaic potential window 

from 0.175 to 0.275 V (vs. Ag/AgCl). The anodic currents at 0.225 V (vs. Ag/AgCl) 

were plotted as a function of scan rate. Then linear fitting was adopted to these points, 

and the slope of plots gave the value of Cdl. The ECSA value of catalyst was deduced 

from Cdl by dividing a factor of 0.035 mF/cm2, according to the previous report [13]. 

The specific activity of catalyst was revealed by normalizing the current to the ECSA 

value to exclude the effect of surface area on catalytic activity. The ECSA values and 

specific activities of catalysts are listed at Table S2. 

 

1.7 Turnover frequencies (TOFs) calculations 

TOF is defined as the frequency of reaction per active site, which is used to compare the 

intrinsic activity of each catalyst [14]. The TOFs of catalysts on GCEs in this study 

were calculated by the following equation: 

ܨܱܶ ൌ
݆ ൈ ܣ

4 ൈ ܨ ൈ ݊
	 

where j is the current density obtained at 1.63 V (vs. RHE), A is the geometric area, F is 

the Faraday constant, and n is the mole number of active sites on electrode that is 

calculated via the total loading mass from the following equation: 

݊ ൌ
݉௟௢௔ௗ௜௡௚

ݓܯ
ൈ  ݎ

where ݉௟௢௔ௗ௜௡௚ is the loading mass of catalyst on GCE, ݓܯ is the molecular weight 

of catalyst and ݎ is the molar ratio of active atoms in the catalyst. In this work, the 

Ir/Ru atomic ratio of RuxIryO2 catalyst is 0.5 according to the results from ICP-MS 

analysis. The TOF values of catalysts are listed at Table S2. 

 

1.8 Bioelectrochemical reactor for synthesis of poly(3-hydroxybutyrate) (PHB) 

The water splitting and CO2 fixation by microorganisms took place in a single sealed 

chamber. The reactor is a 150 mL glass bottle with a 4-ports connection system on the 

cap and 2 ports on the bottle body. The reactor was placed in a room at a constant 

temperature of 30 ℃. The two ports of the cap were used to insert electrodes, while 

the third one served as gas inlet controlled by a flowmeter and the last one was 
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connected to the ambient atmosphere through a gas filter. Two ports on the bottle 

body are used for injection and sampling. 

 

For a typical experiment, 90 mL minimal medium solution bubbled with CO2 was 

added into the reactor, and water splitting was performed via a two-electrode 

configuration. The composition of minimal medium was Na2HPO4·7H2O (3.57 g/L), 

KH2PO4 (1.5 g/L), (NH4)2SO4 (1.0 g/L), MgSO4 (39.07 mg/L), CaSO4·2H2O (1 

mg/L), NiSO4·6H2O (0.524 mg/L), FeC6H5O7·5H2O (0.547 mg/L) and NaHCO3 (200 

mg/L). The RuxIryO2 catalysts deposited onto carbon fiber felt are used as anode and 

CoW(OH)x catalysts deposited onto carbon fiber felt are used as cathode [15]. After 

inoculation with R. eutropha strains [16], the reactor was sealed and bubbled with 

CO2 gas under stirring. The electrolyte was sampled daily to monitor and quantify the 

bacterial growth and biomass product accumulation.  

 

The bacterial growth was measured by determining the optical density at 600 nm 

(OD600) of the electrolyte sample taken from the reactor. A 650 nm laser pointer was 

directed at a photodiode across the cuvette containing bacteria and electrolyte. The 

standard curve between the measured light intensity and OD600 was established, after 

measuring the transmitted light from R. eutropha cultures of known OD600 values. For 

quantification of the PHB product, the electrolyte sample taken from the reactor was 

first centrifuged at 12000 rpm for 1 min. The cell pellet and PHB standard substance 

(Sigma 363502) were digested into 3-hydroxybutyrate with concentrated H2SO4 at 90 ℃ 

for 1 h. The digestion dilution was sequentially diluted with deionized water by 50 

times and filtered with 0.22 μm filter. The pretreated samples were determined by a 

high-performance liquid chromatography system (Waters, e2695) equipped with a 

2998 PDA detector (210 nm). An Aminex HPX-87H column was used at 35  ℃ with 4 

mM H2SO4 as the mobile phase at a flow rate of 0.6 mL/min for 30 min. The elution 

time was ~28 min for the PHB product [16]. 
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The surface phase diagrams (Fig. S3a and S3b) show that the formation of Ru=O (Ir=O) 

on RuxIryO2 surface, corresponding to the adsorbed O* species on Ru (Ir), is promoted 

(suppressed) compared to that on RuO2 (IrO2). Notably, the formation of Ru=O is more 

thermodynamically favorable than that of Ir=O on RuxIryO2 with the applied potential 

above 1.0 V (Fig. S3c). Thus, the existence of Ru=O species adjacent to the Ir active 

center in RuxIryO2 system under the actual neutral OER conditions (pH = 7) can be 

anticipated. At the same time, owing to the higher OER activities of Ir active sites than 

those of Ru active sites, the Ir=O species at steady state would be easier to converse 

compared to Ru=O species. Thus, the amount of Ru=O species will be larger than that 

of Ir=O species on RuxIryO2 surface. 
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3 Supplementary Tables 

 

Table S1. Theoretical overpotentials of Ru and Ir sites on RuxIryO2(110) with different Ru/Ir atomic ratios under different surface 

environments.  

 Ru Ru (Ir-H2O) Ru (Ir-OH) Ru (Ir=O) Ir Ir (Ru-H2O) Ir (Ru-OH) Ir(Ru=O) 

IrO2 \ \ \ \ 0.67 \ \ \ 

Ru0.25Ir0.75O2 0.57 0.68 0.58 0.57 0.54 0.59 0.52 0.45 

Ru0.5Ir0.5O2 0.54 0.64 0.56 0.57 0.54 0.58 0.52 0.46 

Ru0.75Ir0.25O2 0.55 0.64 0.54 0.56 0.50 0.57 0.48 0.39 

RuO2 0.62 \ \ \ \ \ \ \ 
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Table S2. Summary of electrochemical performance of each catalyst on GCE. 

Sample η1 (mV) Cdl (mF) 
ECSA area

(cm2) 

Mass activity 

(A/g) 

Specific activity2 

(mA/cm2) 
TOF3 (s-1) TOF4 (s-1) 

RuxIryO2
 324±1 1.127 32.20 49.25 0.046 0.159 0.326 

RuO2 459±3 0.713 20.37 14.03 0.021 0.048 0.048 

IrO2 755±5 0.162 4.63 3.03 0.020 0.009 0.009 

1 Overpotential at 10 mA/cm2
geo. 

2 Calculated according to ECSA area. η=400 mV. 

3 Calculated according to mass loading of all metal atoms. η=400 mV. 

4 Calculated according to mass loading of all active sites. η=400 mV. 
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Table S3. Summary of recently reported OER electrocatalysts in neutral media. 

Sample pH 

On GCE On Foam 

Reference η at 10 mA/cm2 

(mV) 

η at 10 mA/cm2 

(mV) 

Our catalyst 7.2 324±1 260±2 This work 

Co4Mo 7.2 456  [17] 

NiFeCoP 7.2 560 330 [18] 

IrO2 7.1 520a  [19] 

NiFeMg 7.2 514 310 [20] 

(FexNi1−x)2P 7.0  396 [21] 

CoO/Co4N 7.0  398 [22] 

Co2P 7.0 592  [23] 

Co-Pi 7.0  450b [24] 

CoO 7.0 851  [25] 

Ni 7.0  600 [26] 

IrOx/CNxNTs 7.0  472 [27] 

IrO2 7.2  460c [28] 

a. FTO glass 

b. Ti mesh 

c. Ti plate
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Table S4. Summary of other reported biosynthesis systems from CO2 fixation. 

Microorganism 
Voltage of 

full cell (V) 

Current density 

(mA/cm2) 
Product Selectivity (%) Reference 

R. eutropha H16 1.8 4.5 PHB 100 This work 

R. eutropha H16 2.0 ~ 4.5 PHB 100 [29] 

R. eutropha H16 2.7 3.75 biomass - [30] 

R. eutropha Re2133-pEG12 3.0 9.5 isopropanol 100 [30] 

S. ovata 3.0 ~ 7.1 acetate 100 [31] 

R. eutropha LH74D ~ 4 16.7 isobutanol + 3-methy-1-butanol 94.6 [32] 

R. eutropha H16 ~ 5 - biomass - [33] 
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