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Abstract— Fiber-shaped memristors have attracted enor-
mous attention as potential wearable electronics. Here,
a Cu-ion diffusive memristor with fiber shape was pro-
posed for artificial synapse and neuromorphic comput-
ing. The fiber-shaped diffusive memristor exhibits gradual
conductance modulation characteristics under consecu-
tive voltage sweeps. Typical synaptic plasticity including
EPSC, PPF, PPD, LTP/LTD and learning behaviors were all
successfully achieved by the memristor. The active Cu2+

of diffusive memristor was similar as Ca2+ diffusion in
biological synapse, which is the basis of realizing the
functions of synaptic plasticity. The fiber-shaped Cu2+

diffusive memristor acting as artificial synapse paves the
way for next-generation wearable neuromorphic computing
system.

Index Terms— Textile electronics, memristor, artificial
synapse, neuromorphic computing.

I. INTRODUCTION

INSPIRED by human brain and biological system, neuro-
morphic computing has become a new computing paradigm

with high efficiency and low power consumption [1], [2], [3],
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[4], [5], which shows great potential in overcoming the bottle-
neck of von Neumann architecture [6], [7]. In biological neural
network, synapses are the basic units for various neuromorphic
computing functions [8], [9], [10], [11], [12], [13]. There are
1011 neurons and 1015 synapses in human brain, where the
ions diffusion plays an important role in neurotransmitters
release and transmission of biological information [14], [15].
Hence, in order to get closer to the working mode of human
brain, developing an emerging ionic diffusive device with
high biological similarity to simulate synapse is an effective
way to realize high-efficiency brain-inspired neuromorphic
computing.

The increasing demands of wearable artificial intelligent
devices proposed huge requirements of excellent flexibil-
ity for each functional unit. As the core computing unit,
flexible neuromorphic computing electronics have attracted
great attentions of researchers [16], [17], [18]. Developing
flexible neuromorphic computing electronics could increase
the wearable comfort and bending reliability of the entire
wearable system. On the other hand, the size of traditional
computing devices is gradually approaching the physical limit,
and the big data computing require integrating more neuro-
morphic computing devices on a flexible substrate to achieve
large-scale parallel computing, which undoubtedly increases
the flexibility requirement for computing devices. Various
flexible three-terminal transistor and two-terminal memristor
have been reported with typical synaptic functions [19], [20],
[21], [22], [23], [24], such as excitatory post-synaptic current
(EPSC), paired-pulse facilitation (PPF), paired-pulse depres-
sion (PPD), long-term potentiation/ depression (LTP/LTD) and
so on [25], [26], [27], [28], [29], and [30]. Among different
artificial synaptic devices, fiber-shaped memristor is a promis-
ing candidate for next-generation flexible neuromorphic hard-
ware [31], which exhibits advantages of natural two-terminal
woven structure, high-density integration capability, analogue
conductance update and excellent wearability.

In this work, a fiber-shaped Cu-ion (Cu2+) diffusive mem-
ristor Cu/CuO/Pt was proposed to simulate bio-synapse for
neuromorphic computing. The conductance of device could
be modulated by consecutive voltage sweeps, which is based
on the movement of Cu2+, similar as biological ion (Ca2+)

diffusion. Under increased amplitude of applied spike, the
conductance of memristor could be induced to multi-level
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Fig. 1. (a) An illustration of fiber electronics with structure of Cu/CuO/Pt.
Inset is the optical image of Cu fiber with CuO film. (b) Schematic
diagram of biological synapse, where the neurotransmitters release
occurred. (c) The ion diffusion dynamics of biological liquid bilayer
membrane, where Ca2+ flow through ion channel.

states. Furthermore, the synaptic memristor exhibits typical
synaptic plasticity, including EPSC, PPF, PPD, LTP/LTD and
learning behaviors. The conductance states of fiber-shaped
memristor array are stable before and after bending operations,
which paves the way for application of the device in wearable
neuromorphic computing system.

II. EXPERIMENTAL DETAILS

Firstly, the Cu fibers (Alfa Aesar) and Pt fibers (Alfa
Aesar) were used as top electrode and bottom electrode, which
were cleaned with acetone, ethanol and deionized water for
5 min. Then, the active layer of CuO was in-situ grown
on the Cu fibers via an anodic oxidation method, where
the Cu fiber act as anode and the time was controlled at
10 min in the fabrication process. After deposition process,
the structure of Cu/CuO fibers were obtained. Lastly, the Pt
fibers were interwoven with Cu/CuO fibers to form fiber-
shaped memristors. Electrical measurement was carried out
by semiconductor parameter analyzer (Agilent B1500).

III. RESULTS AND DISCUSSION

Textile electronics with interwoven structure are emerging
wearable devices, showing great potential in flexibility and
portability. As shown in Fig. 1a, Cu fiber with CuO film
acts as the core unit of fiber-shaped ion diffusive memristor.
The top of Cu fiber and bottom electrodes of Pt fiber act
as pre-terminal and post-terminal of bio-synapse in Fig. 1b,
respectively. In the active layer of CuO film, Cu2+ diffusion
could lead to conductance modulation of memristor, similar
as weight update process in biological synapse. Fig. 1c shows
the detailed ion diffusion process in liquid bilayer membrane,
where the biological ions of Ca2+ could flow through ion
channel and induce the change of membrane potential. The
natural similarity of ion diffusion process in the fiber-shaped
memristor and biology lays the foundation for the simulation
of synaptic plasticity by artificial synaptic device.

The conductance of fiber-shaped Cu2+ diffusive memristor
show excellent analog switching characteristics under differ-
ent voltages, which was due to the growth and rupture of

Fig. 2. (a) Consecutive decreased current of memristor under negative
voltage sweeping. (b) Consecutive increased current of memristor under
positive voltage sweeping. (c) The growth of conductive filaments under
positive voltage. (d) The state of device under low resistance state.
(e) Rupture of conductive filaments under negative voltage.

conductive filaments (CFs) [32]. As shown in Fig. 2a, the
current values gradually decreased under consecutive nega-
tive voltage sweeping from 0 V to −5 V, indicating the
inhibition capability of synaptic weights in the simulation of
bio-synapse. Fig. 2b shows enhanced current of memristor
under consecutive positive voltage sweeping from 0 V to 5 V,
indicating the potential of device in simulating synaptic weight
update. In order to better understand the physical mechanism
of ion diffusive memristor, we plot the schematic diagram
of conductive filaments in active layer. Fig. 2c-Fig. 2d show
the growth process of CFs in active layer, where the Cu2+

diffused to the bottom electrode and turned to Cu atoms. CFs
were gradually formed with the accumulation of Cu atoms.
The CFs gradually broke when opposite voltage was applied.
Fig. 2d-Fig. 2e show the rupture process of CFs, resulting in
the decrease of device conductance.

Biological synapse could transfer information between
pre-terminal neuron and post-terminal neuron by the release
of neurotransmitters, which ensures the realization of vari-
ous biological synaptic functions and complex neuromorphic
computing. The first step of achieving neuromorphic com-
puting is to simulate synaptic plasticity based on artificial
synaptic device [1]. In this work, typical synaptic plasticity
was successfully emulated by the Cu-ion diffusive memristor.
As shown in Fig. 3a, excitatory synaptic behavior was trigged
by different voltage amplitude. As the increase of pulse
amplitude from 1.2 V, 1.5 V, 2 V, 2.5 V to 3V, the post-synaptic
current increased from 146 nA, 151 nA, 166 nA, 188 nA
and 205 nA, respectively. The result demonstrates that the
memristor could achieve spike-amplitude dependent plasticity
(SADP) as biological synapse.

The synaptic behaviors of PPF and PPD are considered
to be important to the functions of decoding temporal visual
information in biology [7]. PPF and PPD could be mimicked
when a pair of pre-synaptic spikes were applied to pre-terminal
of memristor, as shown in Fig. 3b. The consecutive two
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Fig. 3. (a) EPSC of memristor under different voltage amplitudes
(1.2 V, 1.5 V, 2 V, 2.5 V and 3 V). (b) PPF and PPD characteristics
of artificial synaptic device. (c) PPF index of device with different time
interval. (d) LTP/LTD behaviors of memristor under 30 positive pulses
and 30 negative pulses.

Fig. 4. (a) Schematic diagram of bending fiber-shaped memristor.
(b) Current mapping images of 5 × 5 fiber-shaped memristor array
before bending operation. (c) Current mapping images of device array
after 100 cycles bending operation. (d) Array learning of number “1”
based on 5 × 5 memristor array under initial state, 5 epochs, 10 epochs
and 30 epochs.

positive pulses (1.5 V, 10 ms) with interval of 500 ms could
induced two enhanced post-synaptic current, where the first
current spike (A1) is lower than the second current spike
(A2). Furthermore, PPF index (A2/A1×100%) was calculated
and shown in Fig. 3c. Instead, when two negative pulses
(−1.5 V, 10 ms) with interval of 500 ms applied to device, two
inhibitory current spikes were induced. Long-term plasticity
including LTP/LTD are critical to the functions of learning,
memory and neuromorphic computing in human brain. Fig. 3d
shows the LTP/LTD behavior emulated by memristor, which
was induced by consecutive 30 pulses (2 V, 10 ms for LTP
and −2 V, 10 ms for LTD). The consecutive conductance mod-
ulation characteristic paves the way for memristor achieving
weights update as bio-synapse.

A fiber-shaped memristor array of 5 × 5 was proposed
to investigate the flexibility and learning functions of artifi-
cial synapses. Fig. 4a shows schematic of textile memristor
under flat state and bending operations. The 5 × 5 current

mapping of largest values in LTP (245 nA∼ 259 nA) were
statistically plotted in Fig. 4b. After 100 cycles bending oper-
ations (bending radius of 10 mm), the stable current mapping
(242 nA∼ 260 nA) reveals excellent reliability of fiber-
shaped memristor, as shown in Fig. 4c. Furthermore, array
level learning functions were verified in Fig. 4d. The digit
of “1” could be learned by the 5 × 5 memristor array with
increased pulse number (0, 5, 10, 30 epochs). The contour of
digit “1” was gradually clear under increased pulse number
from 0 to 30 epochs, indicating that the learning effect is
gradually deepened. This enhanced conductance process of
digit is analogous to the repeated learning of information to
enhance memory effect in human brain.

IV. CONCLUSION

In summary, the fiber-shaped Cu2+ diffusive memristor
has been proposed for neuromorphic computing, where the
Cu2+ migration is similar to the biological ion diffusion
process. Under different voltage stimulation, the artificial
synaptic memristor could emulate typical synaptic functions,
including EPSC, SADP, PPF, PPD and LTP/LTD. By con-
structing a 5 × 5 memristor array, the array level learning
behaviors of digit “1” was verified. These results indicate that
the fiber-shaped memristor have potentials in next-generation
wearable neuromorphic computing system.
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