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Artificial synapse devices with co-location memory and logic
functions have attracted enormous attention since they are the
indispensable components for neuromorphic computing systems
[1]. Extensive efforts have been made to mimic neural electric
pulse patterns through solid-state devices like two-terminal mem-
ristors and three-terminal transistors. However, it remains highly
desired to obtain chemical neuromorphic functions in aqueous
environment for brain-inspired computation and biomedical appli-
cations [2,3]. Although organic electrochemical transistors could
be operated in aqueous solution, their three-terminal structure is
unfavorable for reliable integration with biological synapses at
high density [4,5]. Fluidic memristor based on simple two-terminal
structure and confined ion transport is promising to be well com-
patible with biological systems, but the neuromorphic function
remains an unmet need due to the shielding effect of interionic
interaction in aqueous solution [6,7].

Until very recently, inspired by the biological ion channels
(Fig. 1a), Mao and co-workers [8] from the Institute of Chemistry,
Chinese Academy of Sciences have made a breakthrough by
designing a polyelectrolyte-confined fluidic memristor (PFM) to
realize neuromorphic functions in the aqueous environment. Such
PFM was fabricated through surface-initiated atomic transfer rad-
ical polymerization to modify the inner wall of channels with poly-
imidazolium brushes (PimBs) (Fig. 1b). Based on the spatial
confinement and molecular recognition of such modified channels,
the resultant PFMs allow for hysteretic ion transport under the
stimulation of electric fields and chemicals, thus leading to a typi-
cal history-dependent ion memory effect. Besides the capacity of
diverse electric pulse patterns to function as typical memristors,
the PFMs could also generate chemical-regulated electric pulses
and chemical-electric signal transduction benefiting from their
intrinsically fluidic properties. With the structural and functional
similarity to the natural biological systems, the PFMs are expected
to promote the comprehension and interaction of chemical lan-
guage from the human brain.

The PFM device was composed of PimBs-confined channel
immersed in an electrolyte solution, two Ag/AgCl electrodes were
respectively placed in the channel and electrolyte for electric mea-
surements. Under the stimulation of external voltage, the PFMs
could generate various electric pulse patterns to successfully real-
ize the neuromorphic functions of traditional memristors. With
systematical studies, the current-voltage (I-V) relationship of PFMs
exhibited a typical hysteresis loop in contrast to that of bare fluidic
memristor (Fig. 1c), indicating the significant influence of surface
charge in PimBs-confined channels. Further measurements also
demonstrated the change of ion conductivity for PFM was a
time-dependent process, ultimately endowing the devices with
ion memory and memristive performances. Such ion memory orig-
inated from the relatively slow redistribution and diffusion
dynamics of ions, which was controlled by Pim–anion interactions
due to the spatial confinement effect. To mimic short-term plastic
electric pulse patterns, the PFMs were stimulated by voltage pulses
to achieve synaptic plasticity like paired-pulse facilitation and
paired-pulse depression. These diverse electric pulses operated
by the PFMs showed long retention time and low energy consump-
tion similar to biological systems, thus allowing for effective neu-
romorphic computation under the aqueous environment.

In comparison to the other neuromorphic devices, the key dif-
ference offered in this work is that the fluidic-based devices not
only exhibit neuromorphic performances comparable to the bio-
logical system, but also process advanced chemical-related func-
tions. For instance, the PFMs could mimic chemical-regulated
short-term plastic electric pulses according to the changes in exter-
nal chemical environment (Fig. 1d), including the ionic strength,
ion species and electrolyte concentration. This chemical modula-
tion effect of PFMs was obtained by tuning the Pim–anion interac-
tions and the synergism of multiple ion species, which is almost
impossible for solid-state systems. More importantly, the fluidic-
based ion redistribution dynamics of the PFMs offer possible
means to regulate neuroplastic behaviors through the use of bioac-
tive molecules. In a physiological electrolyte, the PFMs could
mimic the regulation of memory by adenosine triphosphate, pav-
ing the way for the implementation of direct interfaces and com-
munications with biological systems.

Mimicking the neurotransmitter-related functions of chemical
synapses has long been a challenge, especially for solid-state mem-
ristors. In biological systems, signal transduction among chemical
synapses is generally mediated by the release and recognition of
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Fig. 1. Schematic illustration of the neuromorphic functions realized by interaction-gated ion current in biological neurons (a) and a PimBs-confined fluidic system (b). (c) I-V
curves of PFM (red) and memristor with bare channels (blue) in 10 mmol/L electrolyte solution under a triangle wave with a scan rate of 50 mV/s. The hysteresis loop area is
shaded in purple. (d) Paired-pulse facilitation and paired-pulse depression of PFM in different electrolyte solutions. (e) Electric pulse response of PFM under chemical
stimulation. The blue arrows indicate the delivery of artificial neurotransmitters. Reprinted with permission from Ref. [8], Copyright � 2023, American Association for the
Advancement of Science.
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neurotransmitters. Like the transport of neurotransmitters among
biological synapses, the chemical-electric signal transduction
could be accomplished with PFMs by tuning the interaction
between polyelectrolytes and multiple ion species in the channels.
When the chemical stimuli (e.g., ClO4

�) as artificial neurotransmit-
ters were injected, the PFM showed an electric pulse response
(Fig. 1e), demonstrating its capability of transferring the chemical
stimuli of certain species into electric pulse signals. That is to
say, the PFMs with easily adaptable configurations can work as
artificial chemical synapses for implantable devices and
neuroprosthetics.

In summary, this study paves the avenue to connect chemistry
with neuromorphic devices for brain-inspired computing, intelli-
gence sensing, human–machine interfaces and neurosensory pros-
thetics, representing a remarkable landmark for constructing
multi-functional artificial synapse devices by interface chemistry.
The fabricated PFM is versatile and features with high biocompat-
ibility, considerable memristive performances and neuromorphic
functions, which will make an important impact on the future of
artificial intelligence. For practical applications, given the ion-
based fluidic systems in nature, more research could be explored
to improve the stability and switching speed of devices. Also, in a
crossbar array, the design of device packaging, soft circuit and
large-scale integration is desired to fulfill the requirement for
brain-inspired computing and biomedical applications.
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