Supporting Information

Functional fiber materials to smart fiber devices

Chuanrui Chen, Jianyou Feng, Jiaxin Li, Yue Guo, Xiang Shi, Huisheng Peng*

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China; E-mail: penghs@fudan.edu.cn.

Electrode metericl	Device	Specific	Flactroluta	Energy density	Notas	
Electrode material	aterial Electrolyte structure capacitance		Power density	INULES		
				2.7×10 ⁻⁸ Wh/cm ²		
Plastic/ZnO NWs ¹	Plastic/ZnO NWs ¹ Twisted 2.4 mF/cm ² PVA/H ₃ PO ₄		1.4×10 ⁻⁵ W/cm ²	Flexible		
	Twisted	13.31 F/g		1.73×10 ⁻³ Wh/cm ³	N/A	
CNT/MnO ₂ ²			PVA/H ₃ PO ₄	0.79 W/cm ³		
	Coaxial	59 F/g	PVA/H ₃ PO ₄	1.88 Wh/kg	Flexible	
CNI				755.9 W/kg		
Dukhar/CNT/OMC4	Coarial	41 4 E/a	DVA/ILDO	NT/A	Flexible,	
Rubber/CN1/OMC	Coaxial	41.4 F/g	Р V А/П3РО4	N/A	stretchable	
GO/CMC/CNT ⁵	Coaxial	177 mF/cm ²	PVA/H ₃ PO ₄	3.84×10 ⁻⁶ Wh/cm ²	Elevible	
				2×10 ⁻⁵ W/cm ²	Flexible	
CNT/PANI ⁶	Twisted	274 F/g	PVA/H ₃ PO ₄	N/A	Flexible,	
					weavable	
CNT/PANI ⁷	Parallel	255.5 F/g	PVA/H ₃ PO ₄	12.75 Wh/kg	Flexible,	
				1494 W/kg	weavable	
SWNT/rGO ⁸ Parallel 300 F/cm ³ (F) ^a		PVA/H ₃ PO ₄	6.3×10 ⁻³ Wh/cm ³	Flexible,		
				1.085 W/cm ³	weavable	
rGO/MnO ₂ /PPy ⁹	Parallel	411 mF/cm ² (E) ^a	PVA/H ₃ PO ₄	1.1×10 ⁻³ Wh/cm ³	Flexible,	
rou/mnu ₂ /PPy ²				0.16 W/cm ³	weavable	
MoS2-rGO/ MWCNT ¹⁰	Twisted	4.8 F/cm ³	PVA/H ₂ SO ₄	N/A	Flexible,	
					weavable	
Carbon/MnO ₂ /PPy	Parallel	0.613 F/cm ²	LiCl	$0.340 \times 10^{-3} Wh/cm^2$	Flexible	
CF/V2O5/PANI ¹¹				30×10 ⁻³ W/cm ²		
				< 1, 10.3 WH / ²		
Cotton/Ni/rGO ¹²	Parallel	311 F/g	PVA/LiCl	6.1×10 ⁻³ Wh/cm ³	Flexible, weavable	
				1.4 W/cm^3		

Table S1. Examples of recently reported fiber supercapacitors.

CNT/MnO ₂ /PPy ¹³	Coaxial	60.435 mF/cm	PVA/KOH	1.888×10 ⁻⁵ Wh/cm ² 1.62×10 ⁻³ W/cm ²	Flexible, stretchable
CF/MnO ₂ CF/graphene ¹⁴	Parallel	87.1 F/g	PVA/LiCl	27.2 Wh/kg 979.7 W/kg	Flexible, weavable
rGO/PEDOT:PSS ¹⁵	Parallel	304.5 mF/cm	PVA/H ₃ PO ₄	27.1×10 ⁻⁶ Wh/cm ² H ₃ PO ₄ 66.5×10 ⁻⁶ W/cm ²	
Urethane/cotton/ CNT/PPy ¹⁶	Twisted	69 mF/cm ²	PVA/H ₃ PO ₄	6.13×10 ⁻⁶ Wh/cm ² 1.33×10 ⁻⁴ W/cm ²	Flexible, weavable
MWCNT/rGO/PPy ¹⁷	Parallel	25.9 F/cm ³ (E) ^a	PVA/H ₃ PO ₄	9.4×10 ⁻⁴ Wh/cm ³ 7.32×10 ⁻³ W/cm ³	Flexible, weavable
CF/MnO2 CF/MoO3 ¹⁸	Twisted	4.86 mF/cm ²	KOH/PVA	2.70×10 ⁻³ Wh/cm ² 5.3×10 ⁻⁴ W/cm ²	Flexible
CNT/TiN/MnOx CNT/TiN/carbon ¹⁹	Twisted	36 F/cm ³	EMIMTFSI/ PVDF/HFP	6.12×10 ⁻² Wh/cm ³ 0.2 W/cm ³	Flexible
CF^{20}	Twisted	25 mF/cm ²	PVA/H ₃ PO ₄	3.5×10 ⁻⁶ Wh/cm ² 4×10 ⁻⁶ W/cm ²	Flexible, weavable
rGO/PEDOT:PSS /PVA ²¹	Parallel	281.2 F/g	PVA /H2SO4	N/A	Flexible, weavable, stretchable
Ni/VGNs/ MnO2 ²²	Twisted	56 mF/cm ²	CMC/Na ₂ SO ₄	7.7×10 ⁻³ Wh/cm ² 5×10 ⁻³ Wh/cm ²	Flexible, weavable
Polymer/CNT/ PEDOT:PSS/MnO ₂ CNT/PPy ²³	Coaxial	3.16 F/cm ³	PVA/LiCl	1.42×10 ⁻³ Wh/cm ³ 5×10 ⁻³ W/cm ³	Flexible, weavable, stretchable
CNT/PEDOT:PSS /MnO2/Ag NW ²⁴	Parallel	63.5 F/cm ³	Chitosan/ PVA/LiClO4	5.5×10 ⁻³ Wh/cm ³ 0.48 W/cm ³	Flexible, weavable

Abbreviation: ZnO NWs: zinc oxide nanowires, PVA: poly(vinyl alcohol), H₃PO₄: phosphoric acid, CNT: carbon nanotube, MnO₂: manganese dioxide, OMC: ordered microporous carbon, GO: graphene oxide, CMC: carboxymethyl cellulose sodium, PANI: polyaniline, SWNT: single-walled carbon nanotube, rGO: reduced graphene oxide, PPy: polypyrrole, MoS₂: molybdenum disulfide, MWCNT: multi-walled carbon nanotube, H₂SO₄:

sulfuric acid, CF: carbon fiber, V₂O₅: vanadic oxide, LiCl: lithium chloride, Ni: nickel, KOH: potassium hydroxide, MoO₃: molybdenum trioxide, EMIMTFSI: 1-ethyl-3-methyl-imidazolium bis(trifluoromethyl sulfonyl)imide, PVDF: polyvinylidene fluoride, HFP: hexafluoropropylene, TiN: titanium nitride, PEDOT:PSS: poly(3,4ethylenedioxythiophene):poly(styrene sulfonate), VGNs: vertical graphene nanosheets, Na₂SO₄: sodium sulfate, Ag NW: silver nanowire, LiClO₄: lithium perchlorate; N/A: None.

^a: Specific capacitance of the electrodes.

	—					
Туре	Cathode	Anode	Working Voltage	Specific capacity	Flexibility	
			2.5–4.2 V	1 mAh/cm	can be bended and	
Li-ion ²⁵	Al wire/LiCoO ₂	Cu wire/Ni-Sn		at 0.1 A/cm	twisted	
Li-ion ²	MWCNT/MnO2	Li wire	1.5–4.3 V	109.62 mAh/cm ³	NT /A	
				at $5 \times 10^{-4} \text{ mA}$	N/A	
	MWCNT/	MWCNT/	1.5–3.3 V	138 mAh/g	1000 bending cycles;	
Li-ion ²⁶	LiMpsO.	MWCN1/			200 cycles stretching,	
	LIMII2O4	L14115O12		at 0.01 IIIA	at a strain of 100 %	
Li_ion ²⁷	MWCNT/	MWCNT/	1.5–3.2 V	91.3 mAh/g	100 cycles stretching,	
LI-IOII	LiMn ₂ O ₄	Li4Ti5O12		at 0.1 mA/cm	at 100% strain	
Li-ion ²⁸	CNT/LiMn ₂ O ₄	CNT/Li ₄ Ti ₅ O ₁₂	18–30V	92.4 mAh/g	300 cycles stretching,	
LI-IOII	hybrid fiber	hybrid fiber	1.6-5.0 V	at 0.1 mA/cm	at 50% strain	
Li-ion ²⁹	CNT/LiMn ₂ O ₄	CNT/Si/CNT	2.0–4.3 V	106.5 mAh/g	can be woven into a	
				at 1 C rate	flexible textile	
Aqueous			0–2.5 V		101 mA h/g even	can be bent, folded
Li-ion ³⁰	CNT/LiMn ₂ O ₄	CNT/PI		at 100 C rate	and twisted into	
					various architectures	
Aqueous	CNT/Na0 44MnO2	CNT/	0–1.6 V	46 mAh/g	bending at 180° for	
Na-ion ³¹	01(1)1(00,44)11102	NaTi ₂ (PO ₄) ₃ @C	0 110 1	at 0.1 A/g	100 times	
Aqueous	CNT/MnO2	CNT/Zn	0.8–1.85	302.1 mAh/g	can be bent, knotted,	
Zn-ion ³²	01(1),11102	CIVI/ZII	V	at 60 mA/g	and twisted	
Al-O ₂ ³³	CNT/silver-		0.8–1.7 V	935 mAh/g		
	nanoparticle	Al spring		at 0.5 mA/cm ²	flexible	
	sheets					
Li-O2 ³⁴	aligned CNT	Li wire	2.0–4.8 V	12470 mAh/g	100 bending cycles	
LI-O2	sheet			at 1400 mA/g		

Table S2. Examples of recently reported fiber 1	batteries.
--	------------

Li-O2 ³⁵	CNT sheet	Lithiated silicon/	2140V	500 mAh/g	20000 handing avalag	
		CNT hybrid fiber	2.1–4.0 V	at 0.1 mA	20000 bending cycles	
Li-O2 ³⁶	stainless-steel	T' 1	N/A	9299 mAh/g	5000 rounds of	
	mesh/N-CNTs	L1 rod		at 500 mA/g	bending and stretching	

Abbreviation: LiCoO₂: lithium cobalt oxide, LiMn₂O₄: lithium manganate, Li₄Ti₅O₁₂: lithium titanate, PI: polyimide.

REFERENCES

- Bae, J.; Song, M. K.; Park, Y. J.; Kim, J. M.; Liu, M.; Wang, Z. L. Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage. *Angew. Chem. Int. Ed.* 2011, *50*, 1683–1687.
- (2) Ren, J.; Li, L.; Chen, C.; Chen, X.; Cai, Z.; Qiu, L.; Wang, Y.; Zhu, X.; Peng, H. Twisting Carbon Nanotube Fibers for Both Wire-Shaped Micro-Supercapacitor and Micro-Battery. *Adv. Mater.* 2013, 25, 1155–1159.
- (3) Chen, X.; Qiu, L.; Ren, J.; Guan, G.; Lin, H.; Zhang, Z.; Chen, P.; Wang, Y.; Peng, H. Novel Electric Double-Layer Capacitor with a Coaxial Fiber Structure. *Adv. Mater.* 2013, 25, 6436– 6441.
- (4) Yang, Z.; Deng, J.; Chen, X.; Ren, J.; Peng, H. A Highly Stretchable, Fiber-Shaped Supercapacitor. Angew. Chem. Int. Ed. 2013, 52, 13453–13457.
- (5) Kou, L.; Huang, T.; Zheng, B.; Han, Y.; Zhao, X.; Gopalsamy, K.; Sun, H.; Gao, C. Coaxial Wet-Spun Yarn Supercapacitors for High-Energy Density and Safe Wearable Electronics. *Nat. Commun.* 2014, *5*, 3754.
- (6) Cai, Z.; Li, L.; Ren, J.; Qiu, L.; Lin, H.; Peng, H. Flexible, Weavable and Efficient Microsupercapacitor Wires Based on Polyaniline Composite Fibers Incorporated with Aligned Carbon Nanotubes. J. Mater. Chem. A 2013, 1, 258–261.
- (7) Chen, X.; Lin, H.; Deng, J.; Zhang, Y.; Sun, X.; Chen, P.; Fang, X.; Zhang, Z.; Guan, G.; Peng, H. Electrochromic Fiber-Shaped Supercapacitors. *Adv. Mater.* **2014**, *26*, 8126–8132.
- (8) Yu, D.; Goh, K.; Wang, H.; Wei, L.; Jiang, W.; Zhang, Q.; Dai, L.; Chen, Y. Scalable Synthesis of Hierarchically Structured Carbon Nanotube–Graphene Fibres for Capacitive Energy Storage. *Nat. Nanotechnol.* **2014**, *9*, 555–562.
- (9) Huang, Y.; Hu, H.; Huang, Y.; Zhu, M.; Meng, W.; Liu, C.; Pei, Z.; Hao, C.; Wang, Z.; Zhi,
 C. From Industrially Weavable and Knittable Highly Conductive Yarns to Large Wearable Energy Storage Textiles. ACS Nano 2015, 9, 4766–4775.
- (10) Sun, G.; Zhang, X.; Lin, R.; Yang, J.; Zhang, H.; Chen, P. Hybrid Fibers Made of Molybdenum Disulfide, Reduced Graphene Oxide, and Multi-Walled Carbon Nanotubes for Solid-State, Flexible, Asymmetric Supercapacitors. *Angew. Chem. Int. Ed.* 2015, 54, 4651– 4656.
- (11) Liu, W.; Liu, N.; Shi, Y.; Chen, Y.; Yang, C.; Tao, J.; Wang, S.; Wang, Y.; Su, J.; Li, L.; et al. A Wire-Shaped Flexible Asymmetric Supercapacitor Based on Carbon Fiber Coated with a Metal Oxide and a Polymer. *J. Mater. Chem. A* **2015**, *3*, 13461–13467.
- (12) Liu, L.; Yu, Y.; Yan, C.; Li, K.; Zheng, Z. Wearable Energy-Dense and Power-Dense Supercapacitor Yarns Enabled by Scalable Graphene–Metallic Textile Composite Electrodes. *Nat. Commun.* 2015, *6*, 7260.

- (13) Yu, J.; Lu, W.; Smith, J. P.; Booksh, K. S.; Meng, L.; Huang, Y.; Li, Q.; Byun, J.-H.; Oh, Y.; Yan, Y.; et al. A High Performance Stretchable Asymmetric Fiber-Shaped Supercapacitor with a Core-Sheath Helical Structure. *Adv. Energy Mater.* **2017**, *7*, 1600976.
- (14) Yu, N.; Yin, H.; Zhang, W.; Liu, Y.; Tang, Z.; Zhu, M.-Q. High-Performance Fiber-Shaped All-Solid-State Asymmetric Supercapacitors Based on Ultrathin MnO₂ Nanosheet/Carbon Fiber Cathodes for Wearable Electronics. *Adv. Energy Mater.* **2016**, *6*, 1501458.
- (15) Qu, G.; Cheng, J.; Li, X.; Yuan, D.; Chen, P.; Chen, X.; Wang, B.; Peng, H. A Fiber Supercapacitor with High Energy Density Based on Hollow Graphene/Conducting Polymer Fiber Electrode. *Adv. Mater.* **2016**, *28*, 3646–3652.
- (16) Sun, J.; Huang, Y.; Fu, C.; Wang, Z.; Huang, Y.; Zhu, M.; Zhi, C.; Hu, H. High-Performance Stretchable Yarn Supercapacitor Based on PPy@CNTs@Urethane Elastic Fiber Core Spun Yarn. *Nano Energy* **2016**, *27*, 230–237.
- (17) He, X.; Zi, Y.; Guo, H.; Zheng, H.; Xi, Y.; Wu, C.; Wang, J.; Zhang, W.; Lu, C.; Wang, Z. L. A Highly Stretchable Fiber-Based Triboelectric Nanogenerator for Self-Powered Wearable Electronics. *Adv. Funct. Mater.* **2017**, *27*, 1604378.
- (18) Noh, J.; Yoon, C.-M.; Kim, Y. K.; Jang, J. High Performance Asymmetric Supercapacitor Twisted from Carbon Fiber/MnO₂ and Carbon Fiber/MoO₃. *Carbon* 2017, *116*, 470–478.
- (19) Pan, Z.; Yang, J.; Zhang, Q.; Liu, M.; Hu, Y.; Kou, Z.; Liu, N.; Yang, X.; Ding, X.; Chen, H.; et al. All-Solid-State Fiber Supercapacitors with Ultrahigh Volumetric Energy Density and Outstanding Flexibility. *Adv. Energy Mater.* **2019**, *9*, 1802753.
- (20) Lee, J.; An, G. H. Surface-Engineered Flexible Fibrous Supercapacitor Electrode for Improved Electrochemical Performance. *Appl. Surf. Sci.* 2021, 539, 148290.
- (21) Xu, T.; Yang, D.; Zhang, S.; Zhao, T.; Zhang, M.; Yu, Z.-Z. Antifreezing and Stretchable All-Gel-State Supercapacitor with Enhanced Capacitances Established by Graphene/PEDOT-Polyvinyl Alcohol Hydrogel Fibers with Dual Networks. *Carbon* 2021, *171*, 201–210.
- (22) Zhou, Y.; Cheng, X.; Huang, F.; Sha, Z.; Han, Z.; Chen, J.; Yang, W.; Yu, Y.; Zhang, J.; Peng, S.; et al. Hierarchically Structured Electrodes for Moldable Supercapacitors by Synergistically Hybridizing Vertical Graphene Nanosheets and MnO2. *Carbon* 2021, *172*, 272–282.
- (23) Pan, Z.; Yang, J.; Li, L.; Gao, X.; Kang, L.; Zhang, Y.; Zhang, Q.; Kou, Z.; Zhang, T.; Wei, L.; et al. All-in-One Stretchable Coaxial-Fiber Strain Sensor Integrated with High-Performing Supercapacitor. *Energy Stor. Mater.* **2020**, *25*, 124–130.
- (24) Hong, Y.; Cheng, X.-L.; Liu, G.-J.; Hong, D.-S.; He, S.-S.; Wang, B.-J.; Sun, X.-M.; Peng, H.-S. One-Step Production of Continuous Supercapacitor Fibers for a Flexible Power Textile. *Chin. J. Polym. Sci.* 2019, *37*, 737–743.
- (25) Kwon, Y. H.; Woo, S.-W.; Jung, H.-R.; Yu, H. K.; Kim, K.; Oh, B. H.; Ahn, S.; Lee, S.-Y.; Song, S.-W.; Cho, J.; et al. Cable-Type Flexible Lithium Ion Battery Based on Hollow Multi-Helix Electrodes. *Adv. Mater.* **2012**, *24*, 5192–5197.

- (26) Ren, J.; Zhang, Y.; Bai, W.; Chen, X.; Zhang, Z.; Fang, X.; Weng, W.; Wang, Y.; Peng, H. Elastic and Wearable Wire-Shaped Lithium-Ion Battery with High Electrochemical Performance. *Angew. Chem. Int. Ed.* **2014**, *126*, 7998–8003.
- (27) Zhang, Y.; Bai, W.; Ren, J.; Weng, W.; Lin, H.; Zhang, Z.; Peng, H. Super-Stretchy Lithium-Ion Battery Based on Carbon Nanotube Fiber. *J. Mater. Chem. A* 2014, *2*, 11054–11059.
- (28) Zhang, Y.; Bai, W.; Cheng, X.; Ren, J.; Weng, W.; Chen, P.; Fang, X.; Zhang, Z.; Peng, H. Flexible and Stretchable Lithium-Ion Batteries and Supercapacitors Based on Electrically Conducting Carbon Nanotube Fiber Springs. *Angew. Chem. Int. Ed.* **2014**, *53*, 14564–14568.
- (29) Weng, W.; Sun, Q.; Zhang, Y.; Lin, H.; Ren, J.; Lu, X.; Wang, M.; Peng, H. Winding Aligned Carbon Nanotube Composite Yarns into Coaxial Fiber Full Batteries with High Performances. *Nano Lett.* 2014, 14, 3432–3438.
- (30) Zhang, Y.; Wang, Y.; Wang, L.; Lo, C.-M.; Zhao, Y.; Jiao, Y.; Zheng, G.; Peng, H. A Fiber-Shaped Aqueous Lithium Ion Battery with High Power Density. *J. Mater. Chem. A* 2016, *4*, 9002–9008.
- (31) Guo, Z.; Zhao, Y.; Ding, Y.; Dong, X.; Chen, L.; Cao, J.; Wang, C.; Xia, Y.; Peng, H.; Wang, Y. Multi-Functional Flexible Aqueous Sodium-Ion Batteries with High Safety. *Chem* 2017, *3*, 348–362.
- (32) Li, H.; Liu, Z.; Liang, G.; Huang, Y.; Huang, Y.; Zhu, M.; Pei, Z.; Xue, Q.; Tang, Z.; Wang, Y.; et al. Waterproof and Tailorable Elastic Rechargeable Yarn Zinc Ion Batteries by a Cross-Linked Polyacrylamide Electrolyte. *ACS Nano* 2018, *12*, 3140–3148.
- (33) Xu, Y.; Zhao, Y.; Ren, J.; Zhang, Y.; Peng, H. An All-Solid-State Fiber-Shaped Aluminum– Air Battery with Flexibility, Stretchability, and High Electrochemical Performance. *Angew. Chem. Int. Ed.* **2016**, *128*, 8111–8114.
- (34) Zhang, Y.; Wang, L.; Guo, Z.; Xu, Y.; Wang, Y.; Peng, H. High-Performance Lithium–Air Battery with a Coaxial-Fiber Architecture. *Angew. Chem. Int. Ed.* **2016**, *55*, 4487–4491.
- (35) Zhang, Y.; Jiao, Y.; Lu, L.; Wang, L.; Chen, T.; Peng, H. An Ultraflexible Silicon–Oxygen Battery Fiber with High Energy Density. *Angew. Chem. Int. Ed.* 2017, *56*, 13741–13746.
- (36) Yang, X.-Y.; Xu, J.-J.; Chang, Z.-W.; Bao, D.; Yin, Y.-B.; Liu, T.; Yan, J.-M.; Liu, D.-P.; Zhang, Y.; Zhang, X.-B. Blood-Capillary-Inspired, Free-Standing, Flexible, and Low-Cost Super-Hydrophobic N-CNTs@SS Cathodes for High-Capacity, High-Rate, and Stable Li-Air Batteries. *Adv. Energy Mater.* **2018**, *8*, 1702242.